NS POWER 2020 IRP MODELING RESULTS RELEASE

JUNE 26, 2020

TABLE OF CONTENTS

ASSUMPTION & KEY SCENARIO UPDATES

RESOURCE SCREENING RESULTS

- DIESEL CT SCREENING
- HYDRO SCREENING
- **KEY SCENARIOS**

INITIAL PORTFOLIO STUDY RESULTS

PROCESS UPDATE & WORK COMPLETED

IRP MODELING PLAN

ASSUMPTION & KEY SCENARIO UPDATES

ADJUSTMENTS TO IRP LOAD FORECASTS

Based feedback from some stakeholders and observations from the modeling runs completed to date, NS Power has made the following adjustments to reflect potential impacts of the COVID-19 pandemic:

- The Low Electrification forecast remains unchanged at all DSM levels
- The Mid and High Electrification forecasts are adjusted to moderate the original steep ramp up in electrification over the first 10 years of the forecast; the end points remain unchanged as they are consistent with the established SDGA goals (as modeled in the PATHWAYS study)
- The added COVID-19 Low forecast will test the robustness of certain resource plans to potential pandemic load impacts in the first 5 years (a reduction of 1% in firm peak and 5% in net system requirement in year one, returning to the base Low Electrification forecast by 2026)

The resulting load forecasts continue to explore a wide range of potential scenarios, which will allow the IRP to continue to appropriately test the robustness of potential resource strategies to these various loads.

Adjusted Firm Peak Forecasts

ADJUSTED LOAD FORECAST - COMPARISONS

ELCC FACTORS FOR EXISTING RESOURCES

- NS Power has adopted the ELCC methodology for both existing and new generation resources which is used in calculating unit contributions to Planning Reserve Margins
- ELCC Factors for existing resources have been calculated as follows, using the most recent 3-year average DAFOR rates

	Net Operating Cap. (MW)	ELCC Factor	<u>UCAP Firm Cap. (MW)</u>	<u>Notes</u>
Coal	1081	90%	976	No LIN-2
HFO/Gas	318	73%	232	
Gas CTs	144	93%	133	
LFO CTs	231	77%	178	
Biomass	43	95%	41	
Hydro	374	95%	355	
Wind	595	19%	113	
Other IPPs	34	95%	32	No Wind
ML Base	153	98%	150	
Total	2972		2211	

ELCC Factors

INERTIA CONSTRAINT

- The kinetic inertia constraint is modeled at 3266 MW.sec minimum online requirement
 - This is derived as allowing an approximate contingency of 500 MW.sec (~1 unit) above the level of 2766 MW.sec that was found to be required for stability in the 2019 PSC Study
- Unit provisions are shown in the table on the right for existing and new resource types available to the model

Source	Inertia Contribution (MW.sec)
Generators (01 - Lingan 1)	814
Generators (02 - Lingan 2)	814
Generators (03 - Lingan 3)	797
Generators (04 - Lingan 4)	797
Generators (05 - Point Aconi)	933
Generators (06 - Point Tupper)	777
Generators (07 - Trenton 5)	620
Generators (08 - Trenton 6)	771
Generators (11 - Tufts Cove 1)	403
Generators (12 - Tufts Cove 2)	412
Generators (13 - Tufts Cove 3)	768
Generators (14 - Tufts Cove 4)	245
Generators (15 - Tufts Cove 5)	245
Generators (16 - Tufts Cove 6)	245
Generators (270 - New_50MW Pump Strg)	100
Generators (320 - New_Tre 5 NGas)	620
Generators (321 - New_Tre 6 NGas)	771
Generators (322 - New_TUP NGas)	777
Generators (040 - New_RECIP - 9.3 MW)	45
Generators (050 - New_ CT 50 MW Aero)	250
Generators (052 - New_CC 145 MW)	750
Generators (054 - New_CC 253 MW)	1265
Generators (056 - New_CT 34 MW Aero)	170
Generators (058 - New_CT 33 MW Frame)	165
Generators (059 - New_CT 50 MW Frame)	250
Generators (CAES_Air Component)	100
Generators (H01 - Wreck Cove)	424
Generators (Sync Cond _1)	5 (per MVA of SC)
Lines (670-NB 2nd 345kV Intertie, Basic)	3266

KEY MODELING SCENARIOS

Scenario	Features	Load Drivers	Coal Retires	Resource Strategies Tested	Key Sensitivities
1.0 Comparator	Equivalency GHG	Low Elec. Base DSM	2040	A - Current Landscape C – Regional Integration*	
2.0 Net Zero 2050 Low Electrification	GHG targets decline linearly from 2030 to 0.5Mt in 2050	Low Elec. Base DSM	2040	A - Current Landscape C - Regional Integration	DSM Levels
2.1 Net Zero 2050 Mid Electrification	GHG targets decline linearly from 2030 to 0.5Mt in 2050	Mid Elec. Base DSM	2040	A - Current Landscape B - Distributed Resources C - Regional Integration	 DSM Levels No New Emitting Target Case for Sensitivity Evaluation
2.2 Net Zero 2050 High Electrification	GHG targets decline linearly from 2030 to 0.5Mt in 2050	High Elec. Max DSM	2040	A - Current Landscape C - Regional Integration	DSM LevelsNo New Emitting
3.1 Accelerated Net Zero 2045 Mid Electrification	GHG targets decline from 2025 to 0.5Mt in 2045; path to Absolute Zero 2050	Mid Elec. Base DSM	2030	B - Distributed Resources C - Regional Integration	 DSM Levels No New Emitting Target Case for Sensitivity Evaluation
3.2 Accelerated Net Zero 2045 High Electrification	GHG targets decline from 2025 to 0.5Mt in 2045; path to Absolute Zero 2050	High Elec. Max DSM	2030	B - Distributed Resources C - Regional Integration	DSM Levels

*Based on stakeholder feedback, the scenario highlighted in blue was added to the set of key scenario runs

RESOURCE SCREENING RESULTS DIESEL COMBUSTION TURBINES

RESOURCE SCREENING – DIESEL COMBUSTION TURBINES

- Screening of existing Diesel CTs was conducted by E3 using RESOLVE
- During screening the model was free to re-optimize the resource portfolio and to select any available supply options to replace the CT capacity (e.g. new gas CTs/CCGTs, batteries, firm imports, etc.)
- Analysis was completed on two key scenarios (1.0A and 2.1C)
- Screening results showed that sustaining the existing diesel CT fleet is economic vs. replacement alternatives; Diesel CTs will be assumed "in" in the Initial Portfolio Study runs
- This result was robust to testing with a lower Planning Reserve Margin (PRM) and to testing a single unit retirement

Approach to Screening Diesel CTs

- + The diesel CT screening analysis evaluates the system value of NSP's diesel CT assets
- + E3 performed capacity expansion optimization of NSP's IRP scenarios in RESOLVE, with diesel CTs "in" and "out"
 - The "in" cases reflect the NSP system, including all existing diesel CTs within the model
 - The "out" cases remove the diesel CTs from NSP's existing portfolio and allow the system to perform capacity expansion without the units
- The difference in costs reflects the net system value (or cost) of the diesel CTs

Run the "In" Case: Run RESOLVE with all existing units in the model to identify optimal future resource portfolio that meets reliability and GHG goals while minimizing customer costs

Outputs: System Costs (RR), Capacity Additions, Energy Generation, Retirements, etc.

Run the "Out" Case: Run RESOLVE with existing units except the diesel CTs in the model to identify optimal future resource portfolio that meets reliability and GHG goals while minimizing customer costs, but without the diesel CTs available Outputs: System Costs (RR), Capacity Additions, Energy Generation, Retirements, etc.

The incremental cost of the portfolio (or savings) reflects the net system benefit (or cost) associated with the diesel CTs*

 * Assuming all major system costs and benefits associated with the diesel CTs are within the model.

What value do diesel CTs provide?

- Diesel CTs provide capacity value, which reflects the net costs of new capacity. By maintain the existing Diesel CT fleet, investment in new CTs can be avoided while maintain capacity contributions toward peak loads
- In addition, diesel CTs provide non-spinning reserve capacity service, the value of which is not shown in the charts below
- Diesel CTs are not run often because of their relatively higher fuel costs relative to alternative resource options; as such replacement energy does not factor into these calculations

Incremental Capacity Additions when Diesel CTs Removed from the System

- + The 231 MW diesel CTs are largely used to provide capacity and ancillary services when included in the system
 - They are not run frequently (<1% CF)
- When diesel CTs are removed, RESOLVE builds new gas peakers to replace lost capacity
 - Note that higher ELCC* for replacement gas peakers means less than 231 MW is needed for an equivalent reliability contribution
 - The gas peaker replacement resource is selected economically ahead of other potential replacement options (e.g. battery storage or NGCC units)
- On aggregate, maintaining the existing diesel CTs is worth about ~\$186 MM (no end effects) and ~\$240 MM (with end effects) to the system on an NPV basis

Added Capacity to Replace Diesel CT by 2025

*Effective Load Carrying Capacity

System Value of Diesel CTs - 1.0.A

- + While the sustaining costs of maintaining diesel CTs are higher in certain years of investment, this analysis shows the costs to replace with alternative resources exceeds the costs to retain the resources over the planning horizon on an NPV basis
- The difference between the blue and yellow bars/lines reflects the net system value

^{*} Replacement energy and capacity costs reflect net system savings adjusted for avoided sustaining capital and fixed O&M

Dotted line reflects the levelized sustaining capital expenditures and fixed O&M

 Results remain the same under 2.1.C., given similar replacement builds required to provide required system capacity

* Replacement energy and capacity costs reflect net system savings adjusted for avoided sustaining capital and fixed O&M

Dotted line reflects the levelized sustaining capital expenditures and fixed O&M

System Value of Diesel CTs – 2.1.C - Lower PRM Requirement

- + The value of the diesel CT units does not change with a lower PRM
- + When diesel CTs were removed, the model still replaces the peakers with 190 MW of new gas CTs
- + Removing a 33 MW of diesel CT from the model under the lower PRM sensitivity resulted in a total system cost NPV that was higher than when the unit was sustained through the planning horizon

RESOURCE SCREENING RESULTS HYDRO

RESOURCE SCREENING - HYDRO

- Screening of the existing hydro systems was conducted by E3 using RESOLVE
- During screening the model was free to re-optimize the resource portfolio and to select any available supply options to replace the hydro capacity and energy (e.g. new gas CTs/CCGTs, batteries, firm and non-firm imports, wind, etc.)
- Analysis was completed on two key scenarios (1.0A and 2.1C)
- Sustaining and Decommissioning costs were taken from NS Power's most recent Hydro Asset Study
- Wreck Cove and Mersey were modeled individually and remaining systems were modeled in two groups with similar operating characteristics
- Screening results showed that sustaining the existing hydro systems is economic vs. replacement alternatives; existing hydro will be assumed "in" in the Initial Portfolio Study runs
- NS Power will conduct a capacity expansion run in PLEXOS with the Mersey hydro system retired

Overview of Hydro Screening Analysis

+ The hydro screening analysis assesses the value of NSP's hydro assets

- + E3 performed "in" and "out" cases in RESOLVE under core IRP scenarios
 - "In" Cases: Model the NSP system under the given IRP scenario, with all existing hydro units assumed to continue operating
 - "Out" Cases: Removes a given hydro unit/ group from the model and performs capacity expansion without the asset, replacing the system services provided to meet demand at lowest cost subject to model constraints
- + The hydro asset's value is based on the costs to sustain versus decommission the unit
- Comparison done over 40 years given timeframe of input data on sustaining capital and decommissioning costs

Run the "In" Case: Run RESOLVE with all existing units in the model to identify optimal future resource portfolio that meets reliability and GHG goals while minimizing customer costs

Run the "Out" Case: Run RESOLVE with existing units except the hydro asset in the model to identify optimal future resource portfolio that meets reliability and GHG goals while minimizing customer costs, but without those units available

Organize modeled and non-modeled costs:

<u>Sustaining/Operating</u> <u>Asset:</u> - Sustaining Capital (in RESOLVE) - Fixed O&M (in RESOLVE)

- Decommissioning Asset: - Decommissioning Costs (outside RESOLVE)
- Replacement System Costs (in RESOLVE)

The difference between decommissioning and sustaining/operating reflects the system benefit (or cost if negative) associated with the hydro asset

<u>Wreck Cove Hydro</u>: System value provided by Wreck Cove in RESOLVE

- Wreck Cove provides incremental energy and capacity value to the system; the energy value are higher in later years as emissions become binding and coal units are retired
- Wreck Cove is slightly more valuable in the 2.1.C. scenario, which has higher loads and lower carbon targets, but access to emissions-free imports

<u>Wreck Cove</u>: Replacement capacity and energy when Wreck Cove removed from the model

- When Wreck Cove is removed from the system, the model builds gas peakers for replacement capacity
- + The model replaces Wreck Cove's energy primarily with coal before 2030 when emissions are not binding, and with wind, imports, and gas CCGT after 2035 when emissions become more constrained

Replacement Capacity and Energy when Wreck Cove Removed – 1.0.A.

Replacement Capacity and Energy when Wreck Cove Removed – 2.1.C.

<u>Mersey Hydro</u>: System value provided by Mersey in RESOLVE modeling

- Mersey provides significant energy value to the system, as well as some incremental capacity value; the energy value are higher in later years as emissions become binding and coal units are retired
- Mersey is slightly more valuable in the 2.1.C. scenario, which has higher loads and lower carbon targets, but access to emissions-free imports

<u>Mersey</u>: Replacement capacity and energy when Mersey removed from the model

- When Mersey is removed from the system, the model initially builds gas peakers for replacement capacity
- + The model replaces Mersey's energy primarily with coal before 2030, and with wind, imports, and gas CCGT after 2035 when emissions become more constrained

Replacement Capacity and Energy when Mersey Removed – 1.0.A.

Replacement Capacity and Energy when Mersey Removed – 2.1.C.

<u>Small Hydro Groups</u>: System value provided by Hydro Assets in RESOLVE modeling

- Several smaller hydro systems in Nova Scotia provide energy value to the system, as well as some incremental capacity value
- In total, hydro assets within Group 1 provided more energy value than Group 2 units due to its higher capacity factor in winter when loads are high
- The energy values are higher in later years as emissions become binding and coal units are retired
- Small hydro systems are slightly more valuable in the 2.1.C. scenario, which has higher loads and lower carbon targets, but access to emissions-free imports

Modeled Valued in RESOLVE 2.1.C. - Group 2

Energy+Environmental Economics

<u>Hydro Assets</u>: Total decommissioning costs relative to sustaining operations – 1.0.A

+ This analysis indicates the cost to replace individual hydro assets with alternative resources exceeds the costs to retain the resource over a 40-year planning horizon on an NPV basis

Mersey

<u>Hydro Assets</u>: Total decommissioning costs relative to sustaining operations – 2.1.C

 Similar results are found for the 2.1C scenario where the more constrained emissions and higher load results in higher replacement costs for renewable hydro capacity

Mersey

RESOURCE SCREENING RESULTS KEY SCENARIOS

RESOURCE SCREENING - KEY SCENARIOS

- Initial runs of select key scenarios and sensitivities were conducted by E3 using RESOLVE
- Early runs in both PLEXOS and RESOLVE were used to validate the construction of the two models concurrently, providing insights by comparing runs of the same scenario across both tools
- Based on the results of the screening results, the supply options available to the PLEXOS Initial Portfolio Study runs were further refined
- NPVs presented in these results are partial revenue requirements that consider modeled costs (i.e. production, O&M, abatement, sustaining capital, and capital investment) and costs considered outside of the long-term model optimization (i.e. energy efficiency costs)

2045 Installed Capacity Across Current Landscape and Regional Integration Cases

+ Higher loads and more stringent decarbonization targets drive greater renewable builds, though access to greater regional imports ("C" Regional Integration cases) slightly mitigates builds and costs

1.0.A - Case Summary <u>Comparator, Low Elec./Base DSM, Current Landscape</u>

Key Observations	Metric	2035	2045
A combination of gas peakers, gas CCGT, and wind is built to replace the retired coal capacity ~300 MW of new wind is built by 2045	GHG Emissions (MMT)	3.7	2.2
	GHG Marginal Abatement Cost (\$/ton)	\$16	\$0
	NPV (\$2021)	\$12,257	
	NPV (\$2021) - with 20-year end effects	\$15,989	
	Average Generation Cost (c/kWh)	7.6	

Energy+Environmental Economics

+

+

+

+

to just 1 MMT

1.0.C - Case Summary Comparator, Low Elec./Base DSM, Regional Integration

Key Observations	Metric	2035	2045
Model selects firm imports when available; ~600 MW of	GHG Emissions (MMT)	3.7	1.0
transmission line is built to access imports in the later years New wind capacity is higher than 1.0.A. The new transmission lines allow for more wind integration without a large storage	GHG Marginal Abatement Cost (\$/ton)	\$12	\$0
	NPV (\$2021)	\$12,193	
build	NPV (\$2021) - with 20-year end effects	\$15,	862
New transmission lines help drop 2045 annual GHG emissions	Average Generation Cost (c/kWh)	7.6	

Capacity Addition (+) and Retirement (-) (MW)

Energy Balance (GWh)

2.0.A - Case Summary Net Zero, Low Elec./Base DSM, Current Landscape

Key Observations	Metric	2035	2045
The net zero case has more stringent GHG constraints	GHG Emissions (MMT)	3.2	1.4
compared to the comparator case	GHG Marginal Abatement Cost (\$/ton)	\$21	\$33
Compared to 1.0A, the system relies less on gas peakers	NPV (\$2021)	\$12,275	
and more on wind and imports	NPV (\$2021) – with 20-year end effects	\$16	,040
	Average Generation Cost (c/kWh)	7.7	

Energy+Environmental Economics

+

2.0.C - Case Summary Net Zero, Low Elec./Base DSM, Regional Integration

Key Observations	Metric	2035	2045
Compared to 2.0.A we see less wind and more imports,	GHG Emissions (MMT)	3.2	1.0
while also requiring fewer batteries for wind balancing.	GHG Marginal Abatement Cost (\$/ton)	\$24	\$0
balance the system and provide ancillary services	NPV (\$2021)	\$12,215	
System cost is similar to 1.0A	NPV (\$2021) - with 20-year end effects	\$15,885	
	Average Generation Cost (c/kWh)	7.6	

+

+

2.1.A - Case Summary Net Zero, Mid Elec./Base DSM, Current Landscape

Key Observations	Key	Obser	vations
------------------	-----	-------	---------

- Higher loads than 2.0.A leads to about ~260 MW more gas peaker build; ~105 MW more CCGT build; ~260 MW more wind build; and~130 MW more battery build
- The average generation cost also increases because the + load is peakier and thus more expensive to serve
- Over 40% of total generation comes from wind by 2045, + and about 25% of total generation comes from imports

Metric	2035	2045
GHG Emissions (MMT)	3.2	1.4
GHG Marginal Abatement Cost (\$/ton)	\$23	\$44
NPV (\$2021)	\$13	,049
NPV (\$2021) - with 20-year end effects	\$17	,315
Average Generation Cost (c/kWh)	7	.8

Capacity Addition and Retirement (MW)

Energy+Environmental Economics

Installed Capacity (MW)
2.1.B - Case Summary Net Zero, Mid Elec./Base DSM, Distributed Resources

Key Observations	Metric	2035	2045
Although total NPV is lower (reflecting less load served), the average generation cost is higher relative to 2.1A, reflecting system costs spread over less kWh DER is modeled as a load reduction; cost of DER resources not included in NPV calculations (\$1.6B-\$2.5B)	GHG Emissions (MMT)	3.2	1.4
	GHG Marginal Abatement Cost (\$/ton)	\$14	\$24
	NPV (\$2021)	\$12,264	
	NPV (\$2021) - with 20-year end effects	\$16,017	
	Average Generation Cost (c/kWh)	7.9	

Energy+Environmental Economics

+

+

+

+

+

2.1.C - Case Summary Net Zero, Mid. Elec./Base DSM, Current Landscape

Key Observations	Metric	2035	2045
With access to firm import options, the model chooses	GHG Emissions (MMT)	3.2	1.2
incremental firm imports which reduce total system cost	GHG Marginal Abatement Cost (\$/ton)	\$26	\$0
Greater import access results in ~370 MW less gas build, ~260 MW less wind build and ~400 MW less battery build Regional integration lowers NPV of system costs relative to 2.1A	NPV (\$2021)	\$12,954	
	NPV (\$2021) - with 20-year end effects	\$17,072	
	Average Generation Cost (c/kWh)	7.7	

+

+

+

4,000

3,000

2,000

1,000

-1,000

-2,000

2021

0

Installed Capacity (MW)

2.2.A - Case Summary Net Zero, High Elec./Max DSM, Current Landscape

Key Observations	Metric	2035	2045
The high electrification forecast creates the need for nearly 1 GW of additional nameplate capacity (~600 MW firm) in 2045, relative to 2.1.A This additional capacity is sourced in roughly equal parts from new gas CCGTs, CTs, wind, and batteries	GHG Emissions (MMT)	3.2	1.4
	GHG Marginal Abatement Cost (\$/ton)	\$24	\$51
	NPV (\$2021)	\$15,057	
	NPV (\$2021) - with 20-year end effects	\$20,068	
The average generation cost increases significantly (~12%)	Average Generation Cost (c/kWh)	8	7

relative to 2.1.A Capacity Addition and Retirement (MW)

5,000

2.2.B - Case Summary Net Zero, High Elec./Max DSM, Distributed Resources

	Key Observations	Metric	2035	2045
+	The addition of DER's mitigates the capacity and energy	GHG Emissions (MMT)	3.2	1.4
needs of the high electrifi	needs of the high electrification forecast	GHG Marginal Abatement Cost (\$/ton)	\$18	\$29
+	+ Average generation cost increases relative to 2.2A and	NPV (\$2021)	\$14	,291
+	DER is modeled as a load reduction; cost of DER resources not included in NPV calculations (\$1.6B-\$2.5B)	NPV (\$2021) – with 20-year end effects	\$18	,766
		Average Generation Cost (c/kWh)	8	.9

+

+

2.2.C - Case Summary Net Zero, High Elec./Max DSM, Regional Integration

Key Observations	Metric	2035	2045
Additional import access helps meet the higher capacity and energy needs under high electrification. Costs decline relative to 2.2.A as the model selects cheaper import capacity, and integrates more wind	GHG Emissions (MMT)	3.2	1.4
	GHG Marginal Abatement Cost (\$/ton)	\$22	\$3
	NPV (\$2021)	\$14,948	
The average generation cost also increases relative to 2.1.C, reflecting the increased cost of serving high	NPV (\$2021) - with 20-year end effects	\$19,770	
	Average Generation Cost (c/kWh)	8.6	
electrification load under the same GHG cap			

Energy Balance (GWh)

III Gas (Existing) - Retirement

+

+

3.1.A - Case Summary Accel. Net Zero, Mid Elec./Base DSM, Current Landscape

Key Observations	Metric	2035	2045
The system builds more wind, solar, and batteries instead of gas to meet the lower GHG emissions target Alternative cases run with emerging technologies (CCS and SMR) resulted in similar costs; the results shown here are without SMR and CCS	GHG Emissions (MMT)	1.3	0.5
	GHG Marginal Abatement Cost (\$/ton)	\$0	\$275
	NPV (\$2021)	\$13,607	
	NPV (\$2021) - with 20-year end effects	\$18,189	
	Average Generation Cost (c/kWh)	8.1	

3.1.B - Case Summary Accel. Net Zero, Mid Elec./Base DSM, Distributed Resources

Key Observations

- + The addition of DER's mitigates the capacity and energy needs of the high electrification forecast
- + Total capacity needs in this case resemble the 3.1.A amounts, with an even lower energy forecast reminiscent the low electrification cases
- DER is modeled as a load reduction; cost of DER resources + not included in NPV calculations (\$1.6B-\$2.5B)

Metric	2035	2045
GHG Emissions (MMT)	1.1	0.5
GHG Marginal Abatement Cost (\$/ton)	\$0	\$82
NPV (\$2021)	\$12,888	
NPV (\$2021) - with 20-year end effects	\$16,831	
Average Generation Cost (c/kWh)	8.3	

Capacity Addition and Retirement (MW)

3.1.C - Case Summary <u>Accel. Net Zero, Mid Elec./Base DSM, Regional Integration</u>

Key Observations

- + System costs decrease relative to 3.1.A when imports from neighboring regions are available
- + ~570 MW of firm and ~250 MW of non-firm import capacity is built to provide cleaner energy and capacity
- When regional imports are available, the system builds ~ 850 MW less solar, ~500 MW less wind, ~1 GW less batteries, and ~400 MW less CCGT by 2045

Metric	2035	2045
GHG Emissions (MMT)	0.7	0.5
GHG Marginal Abatement Cost (\$/ton)	\$0	\$29
NPV (\$2021)	\$13,468	
NPV (\$2021) – with 20-year end effects	\$17	,684
Average Generation Cost (c/kWh)	8	.0

Capacity Addition and Retirement (MW)

3.2.A - Case Summary Accel. Net Zero, High Elec./Max DSM, Current Landscape

Key Observations	Metric	2035	2045
The system relies on wind, solar, and batteries to meet the additional capacity and energy requirements.	GHG Emissions (MMT)	1.4	0.5
	GHG Marginal Abatement Cost (\$/ton)	\$0	\$498
The system is overbuilt - renewable curtailment in 2045 is 16.4%	NPV (\$2021)	\$15,584	
Average generation cost increases significantly relative to 3.1.A	NPV (\$2021) – with 20-year end effects	\$21,383	
Cases with/without emerging technologies (CCS and SMR) resulted in similar costs, but results shown here show results	Average Generation Cost (c/kWh)	9.2	

Capacity Addition and Retirement (MW)

without SMR and CCS

+

+

+

Energy Balance (GWh)

3.2.B - Case Summary Accel. Net Zero, High Elec., Max DSM, Distributed Resources

	Key Observations	Metric	2035	2045
+	Due to the load reduction provided by DER, less new	GHG Emissions (MMT)	1.3	0.5
	capacity is needed to meet the electrification load	GHG Marginal Abatement Cost (\$/ton)	\$0	\$101
+	 The average generation cost, however, increases because the lower load factor DER is modeled as a load reduction; cost of DER resources not included in NPV calculations (\$1.6B-\$2.5B) 	NPV (\$2021)	\$14,877	
.		NPV (\$2021) – with 20-year end effects	\$19,601	
T		Average Generation Cost (c/kWh)	9.3	

3.2.C - Case Summary Accel. Net Zero, High Elec./Max DSM, Regional Integration

Key Observations

- + System costs decrease when imports from neighboring regions are available
- + ~550 MW of firm and ~270 MW of non-firm import capacity is built to provide cleaner energy and capacity
- When regional imports are available, the system builds + significantly less solar, batteries, wind, and gas by 2045 (relative to 3.2A)

Metric	2035	2045	
GHG Emissions (MMT)	0.7	0.5	
GHG Marginal Abatement Cost (\$/ton)	\$0	\$30	
NPV (\$2021)	\$15	,372	
NPV (\$2021) – with 20-year end effects	\$20,296		
Average Generation Cost (c/kWh)	8.9		

Energy Balance (GWh)

Capacity Addition and Retirement (MW) 5,000

Pumped Storage Battery Wind Tidal Solar

Biomass

Imports (Non-firm)

DR

Coal - Retirement

Energy+Environmental Economics

Installed Capacity (MW)

1.0.A with Low COVID Forecast Comparator, Low COVID Load, Current Landscape

	Key Observations	Metric	2035	2045
+ The slight reduction in load has little	The slight reduction in load has little impact on the	GHG Emissions (MMT)	3.7	2.2
	capacity addition decision	GHG Marginal Abatement Cost (\$/ton)	\$16	\$0
+	The overall system costs changes only slightly	NPV (\$2021)	\$12,178	
		NPV (\$2021) - with 20-year end effects	\$15,910	
	Average Generation Cost (c/kWh)	7	.7	

2.0.A with Low COVID Forecast Net Zero, Low COVID Load, Current Landscape

	Key Observations	Metric	2035	2045
+	The slight reduction in load has little impact on the	GHG Emissions (MMT)	3.2	1.4
capacity addition decision	capacity addition decision	GHG Marginal Abatement Cost (\$/ton)	\$21	\$33
+	 The overall system costs changes only slightly 	NPV (\$2021)	\$12	,196
		NPV (\$2021) - with 20-year end effects	\$15	,961
		Average Generation Cost (c/kWh)	7	.7

2.0.C with Low COVID Forecast Net Zero, Low COVID Load, Regional Integration

	Key Observations	Metric	2035	2045
 + The slight reduction in load has little impact on the capacity addition decision + The overall system costs changes only slightly 	The slight reduction in load has little impact on the	GHG Emissions (MMT)	3.2	1.0
	capacity addition decision	GHG Marginal Abatement Cost (\$/ton)	\$24	\$0
	The overall system costs changes only slightly	NPV (\$2021)	\$12	,138
		NPV (\$2021) - with 20-year end effects	\$15	,808
		Average Generation Cost (c/kWh)	7	.7

INITIAL PORTFOLIO STUDY RESULTS

INITIAL PORTFOLIO STUDY

- The following slides provide the Initial Portfolio Study results from PLEXOS LT for the key scenarios as well for select sensitivities (full capacity expansion runs)
- The section includes several summary comparison slides as well as detailed outputs of each scenario including energy mix, nameplate capacity installation, emissions compliance, several metrics of NPV of partial revenue requirement, and scenario notes
- NPVs presented in these results are partial revenue requirements that consider modeled costs (i.e. production, O&M, abatement, sustaining capital, and capital investment) and costs considered outside of the long-term model optimization (i.e. energy efficiency costs)
- NS Power will continue to refine these scenarios as we move through the Operability / Reliability Assessment and Final Portfolio Study phases of the Modeling Plan

NEAR TERM RESOURCE PORTFOLIOS (2026)

An Emera Company

LONG TERM RESOURCE PORTFOLIOS (2045)

NPV PARTIAL REVENUE REQUIREMENT COMPARISON

Modeled Costs Extrinsic Costs

Modeled Costs Extrinsic Costs

Due to differences in forecast system load affecting production costs, resource plan partial revenue requirement results should not be compared across electrification scenarios

1.0A LOW ELEC. / BASE DSM / COMPARATOR EMISSIONS / CURRENT LANDSCAPE

10-yr NPVRR

\$6,884

2022

1.0C LOW ELEC. / BASE DSM / COMPARATOR EMISSIONS / REGIONAL INTEGRATION

	\$MM	Scenario Notes
25-yr NPVRR	\$12,107	Incremental firm imports enable an early coal unit
25-yr NPVRR w/ EE	\$15,541	 retirement Regional Interconnection constructed in 2039 allows
10-yr NPVRR	\$6,785	remaining coal retirements and wind integration

2.0A LOW ELEC. / BASE DSM / NET ZERO 2050 / CURRENT LANDSCAPE

	\$MM	Scenario Notes
25-yr NPVRR	\$12,392	• Reliability Tie built in 2030 enables wind integration but
25-yr NPVRR w/ EE	\$16,039	 does not provide firm capacity or energy access Wind and CT capacity increase and CCGT capacity
10-yr NPVRR	\$7,151	decreases relative to 1.0A (due to lower GHG cap)

2.0A.S1 (COVID LOW LOAD) LOW ELEC. + COVID LOW / BASE DSM / NET ZERO 2050 / CURRENT LANDSCAPE

	\$MM	Scenario Notes
25-yr NPVRR	\$12,288	Resource plan is essentially unchanged from 2.0A base
25-yr NPVRR w/ EE \$15,984		case; lower production costs in first 5 years due to load reduction lead to a slightly lower NPV
10-yr NPVRR	\$7,019	

2.0A.S2 (MID DSM) LOW ELEC. / MID DSM / NET ZERO 2050 / CURRENT LANDSCAPE

	\$MM	Scenario Notes
25-yr NPVRR	\$12,732	Reliability Tie built in 2036 enables wind integration but
25-yr NPVRR w/ EE	\$16,376	 does not provide firm capacity or energy access Reduction in gas and wind builds relative to 2.0A
10-yr NPVRR	\$7,257	

2.0C LOW ELEC. / BASE DSM / NET ZERO 2050 / REGIONAL INTEGRATION

2000 0

	\$MM	Scenario Notes
25-yr NPVRR	\$12,146	Capacity expansion and generation are very similar to
25-yr NPVRR w/ EE \$15,624		1.0C case but with SDGA compliant GHG curve
10-yr NPVRR	\$6,780	

2.1A MID ELEC. / BASE DSM / NET ZERO 2050 / CURRENT LANDSCAPE

CO₂ Emissions

	\$MM	Scenario Notes
25-yr NPVRR	\$13,306	Reliability Tie built in 2031 enables wind integration but
25-yr NPVRR w/ EE \$17,631		 does not provide firm capacity or energy access Gas CT builds provide capacity to support early
10-yr NPVRR	\$7,140	electrification load growth; energy is supplied by wind and non-firm imports, and CCGT when coal units retire

2.1B MID ELEC. / BASE DSM / NET ZERO 2050 / DISTRIBUTED RESOURCES

	\$MM	Scenario Notes
25-yr NPVRR	\$11,958	• Regional Interconnection built in 2040 with coal unit
25-yr NPVRR w/ EE	\$15,477	 DER is modeled as a load reduction; cost of DER
10-yr NPVRR	\$6,724	resources not included in NPV calculations (\$1.6B-\$2.5B)

2.1C MID ELEC. / BASE DSM / NET ZERO 2050 / REGIONAL INTEGRATION

	\$MM	Scenario Notes
25-yr NPVRR	\$13,037	Reliability Tie built in 2037 enables wind integration
25-yr NPVRR w/ EE \$17,029		 Regional Interconnection built in 2038 to access firm imports (staged from reliability tie)
10-yr NPVRR	\$7,019	

2.1C.S1 (MID DSM) MID ELEC. / MID DSM / NET ZERO 2050 / REGIONAL INTEGRATION

	\$MM	Scenario Notes
25-yr NPVRR	\$13,608	Reliability Tie built in 2038 enables wind integration
25-yr NPVRR w/ EE	\$17,563	 Regional Interconnection built in 2040 to access firm imports (staged from reliability tie)
10-yr NPVRR	\$7,487	

2.1C.S2 (LOW WIND COST) MID ELEC. / BASE DSM / NET ZERO 2050 / REGIONAL INTEGRATION

	\$MM	Scenario Notes
25-yr NPVRR	\$12,852	• Total wind build very similar to 2.1C but larger wind
25-yr NPVRR w/ EE	\$16,760	 additions start earlier (2030 vs. 2037) Reliability Tie built in 2029 enables wind integration
10-yr NPVRR	7,249	 Regional Interconnection built in 2040 to access firm imports (staged from Reliability Tie)

2.2A HIGH ELEC. / MAX DSM / NET ZERO 2050 / CURRENT LANDSCAPE

	\$MM	Scenario Notes
25-yr NPVRR	\$15,763	 Early load growth served by incremental gas CTs and non-firm import energy Reliability Tie built in 2034 enables wind integration Additional wind is integrated with local mitigation DR resources selected starting in 2030
25-yr NPVRR w/ EE	\$21,020	
10-yr NPVRR	\$8,364	

2.2C HIGH ELEC. / MAX DSM / NET ZERO 2050 / REGIONAL INTEGRATION

	\$MM	Scenario Notes
25-yr NPVRR	\$15,353	Reliability Tie built in 2034 enables wind integration
25-yr NPVRR w/ EE	\$20,205	 Regional Interconnection built in 2039 to access firm imports (staged from reliability tie)
10-yr NPVRR	\$8,212	DR selected beginning in 2030

3.1B MID ELEC. / BASE DSM / ACCEL. ZERO 2045 / DISTRIBUTED RESOURCES

	\$MM	Scenario Notes
5-yr NPVRR	\$12,575	Reliability Tie build in 2034 enabled wind integration
25-yr NPVRR w/ EE	\$17,311	 Regional Interconnection built in 2045 to access firm imports (staged from reliability tie)
.0-yr NPVRR	\$6,827	• DER is modeled as a load reduction; cost of DER resources not included in NPV calculations (\$1.6B-\$2.5B)

3.1C MID ELEC. / BASE DSM / ACCEL. ZERO 2045 / REGIONAL INTEGRATION

	\$MM	Scenario Notes
25-yr NPVRR	\$13,477	 Full Regional Interconnection built in 2030 enables firm imports and wind integration Local mitigations (4hr batteries and synchronous condensers) enable additional wind builds to 2045
25-yr NPVRR w/ EE	\$17,619	
10-yr NPVRR	\$7,505	

3.2B HIGH ELEC. / MAX DSM / ACCEL. ZERO 2045 / DISTRIBUTED RESOURCES

25-

25-

10-

	\$MM	Scenario Notes
yr NPVRR	\$15,015	Full Regional Interconnection built in 2030 enables firm
yr NPVRR w/ EE	\$19,365	 imports and wind integration DR selected starting in 2030 DER is modeled as a load reduction; cost of DER resources not included in NPV calculations (\$1.6B-\$2.5B)
yr NPVRR	\$8,436	

70

3.2C HIGH ELEC. / MAX DSM / ACCEL. ZERO 2045 / REGIONAL INTEGRATION

	\$MM	Scenario Notes
25-yr NPVRR	\$15,857	 Gas CT builds and incremental firm imports support early load growth Full Regional Interconnection built in 2030 enables firm imports and wind integration; local mitigation allows additional wind builds to 2045
25-yr NPVRR w/ EE	\$20,790	
10-yr NPVRR	\$8,704	
IRP IN THE CONTEXT OF ONGOING GENERATION TRANSFORMATION

- The graph to the right includes actual annual generation for 2010-2019 and forecast generation from PLEXOS LT for 2021-2045 (2020 is left blank)
- This chart highlights the increasing penetration of renewables on the Nova Scotia system since 2010 as well as the anticipated changes due to the availability of energy over the Maritime Link beginning in 2021

Energy Balance

