2020 IRP ASSUMPTIONS: STAKEHOLDER COMMENTS FEBRUARY 27, 2020

APPROACH

GOALS FOR TODAY

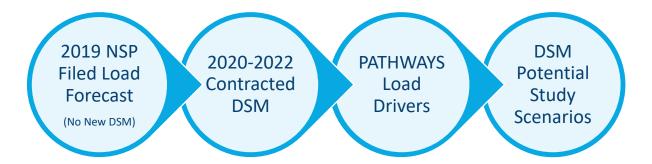
- Discuss general themes of the comments received in each assumption category
- Provide responses & updates where available
- Facilitate discussion on assumptions and take away additional actions
- Propose approach for closeout on remaining stakeholder comments

FINANCIAL

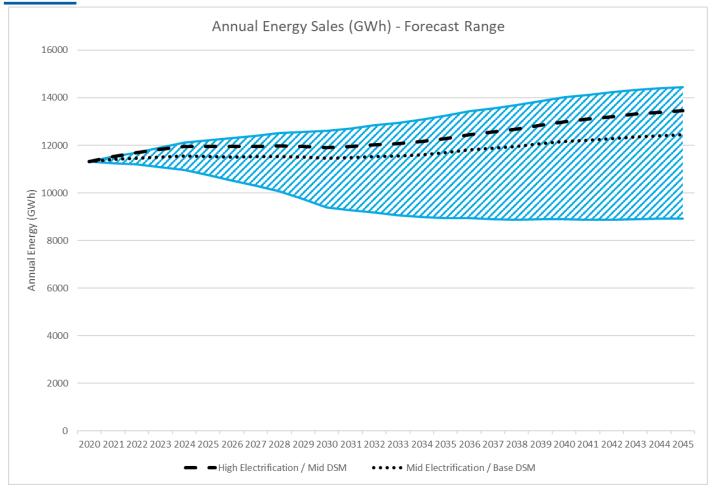
STAKEHOLDER THEMES

- Ensure sensitivities reflect variability of financial assumptions
- Consider financing approaches other than utility-owned
- Recognize how the modular nature and increasing experience with some technologies could reduce underlying risks and potential variability of costs

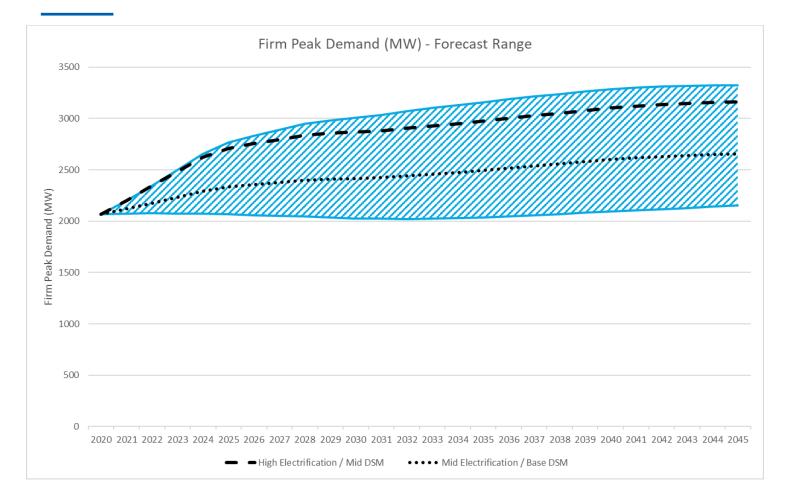
- Draft Modeling Plan suggests sensitivities on lower capital costs
 - These sensitivities also serve as a proxy for alternative capital structures
- Assumptions include trajectories showing capital costs for most developing technologies will decrease over time


STAKEHOLDER THEMES

- How will electrification and technology change affect the uncertainty of future load (both energy and demand)?
- Is the spread of load forecasts sufficiently wide to capture the current uncertainty?
- How do we consider the broader provincial pathway to net zero emissions?
- Were any modifications made to 2019 Load Forecast as filed?
- How should we appropriately pair DSM scenarios with other drivers?
- How could electrification and technology change affect the future load shape?


NS POWER APPROACH

NSP proposes developing IRP load forecasts to integrate 4 sources of data:



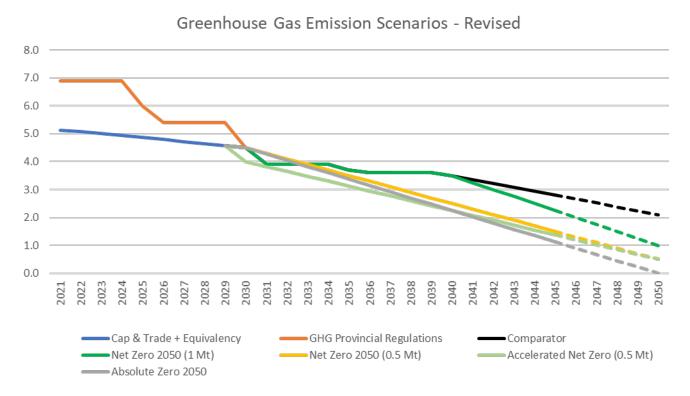
- These load forecasts will then be paired with the appropriate scenarios for the Initial Portfolio Study Phase (based on PATHWAYS Load Driver)
 - For interesting candidate resource plans, multiple DSM Scenarios can be tested
- Intent of this approach is to provide a broad range of forecasts that also captures the provincial pathway to the SDGA targets
- Load shape will be based on 2018 actuals; forecasted shapes will need to be evaluated to ensure reasonableness and adjusted if necessary

ENVIRONMENTAL

STAKEHOLDER THEMES

- Consider broader approach to decarbonization of Nova Scotia economy
- Look at modeling scenarios which reach Net Zero CO₂ / SDGA targets
- Consider further Renewable Energy Standard requirements
- Consider retirement of all coal units by 2030
- Suggest additional CO₂ emission reductions be modeled prior to 2030

ENVIRONMENTAL


- PATHWAYS report informs our approach to economy-wide decarbonization
- NSP has integrated the SDGA into its proposed Initial Portfolios:
 - 7/10 reach Net Zero in 2050
 - 2/10 reach Absolute Zero in 2050
- NSP has proposed an increased Renewable Energy Standard as a sensitivity
- NSP has proposed two GHG Scenarios which include Coal Closure by 2030
 - Net Zero Moderate Electrification with Early Coal Closure
 - Absolute Zero World

ENVIRONMENTAL

NS POWER APPROACH

Pre-2030 CO₂ Reductions – additional reductions are already in place:

SUPPLY SIDE

STAKEHOLDER THEMES

- Updates to capital costs with recent publicly available data (2019)
- Modeling of Battery Storage in Plexos (Charging Costs and Benefits)
- Include flexible solar and hybrid (renewable + storage) resources

- Revised Assumption Set released Feb. 3 incorporated 2019 cost data
- Battery Storage Modeling in Plexos considers actual charging costs
- Plexos and RESOLVE will add storage and solar/wind together if beneficial;
 future project planning will inform whether these are co-located

DISTRIBUTED ENERGY RESOURCES

STAKEHOLDER THEMES

 How to consider other Market Drivers that will influence DER besides NPVRR?

NS POWER APPROACH

 This is considered in the load cases; a high DER case incorporates these resources into the load forecast rather than forcing the model to select a supply-side option

DEMAND SIDE MANAGEMENT (DSM)

STAKEHOLDER THEMES

- Adjustment for 2020-2022 DSM supply agreement (timing)
- Terminology "No DSM" vs. "No New DSM"
- Alignment of DSM profiles with IRP Scenarios / Load Modifier Approach

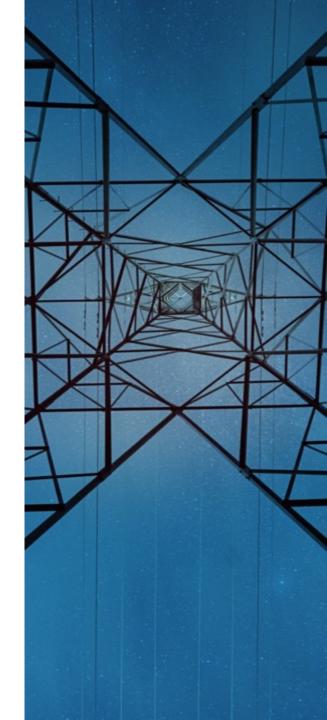
- NS Power will work with E1 on how to adjust the load forecast to incorporate the 2020-2022 contract period without double counting the initial years of the potential study
- 2019 Base Load Forecast includes inherent DSM, but does not include any new DSM assumptions over the IRP study period ("No New DSM")
- NS Power will utilize a load modifier approach for DSM in the IRP; multiple
 DSM profiles can be evaluated in a given scenario by adjusting the forecast

IMPORTS

STAKEHOLDER THEMES

- How will reliability and contingency considerations be taken into account?
- How are imports priced based on source and emissions characteristics?
- Are we modeling dispatchable or fixed import volumes?

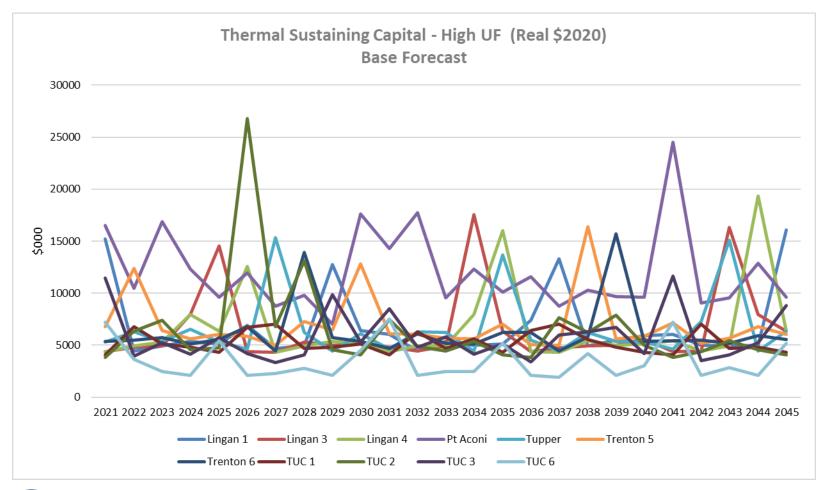
- Reliability considerations for candidate resource plans of interest will be considered during the Reliability and Operability Screening phase
- The model will be provided with pricing for both emitting (with REC / carbon price) and non-emitting sourced imports
- The model will be offered both spot market prices and firm blocks of energy tied to capacity


FUEL PRICING

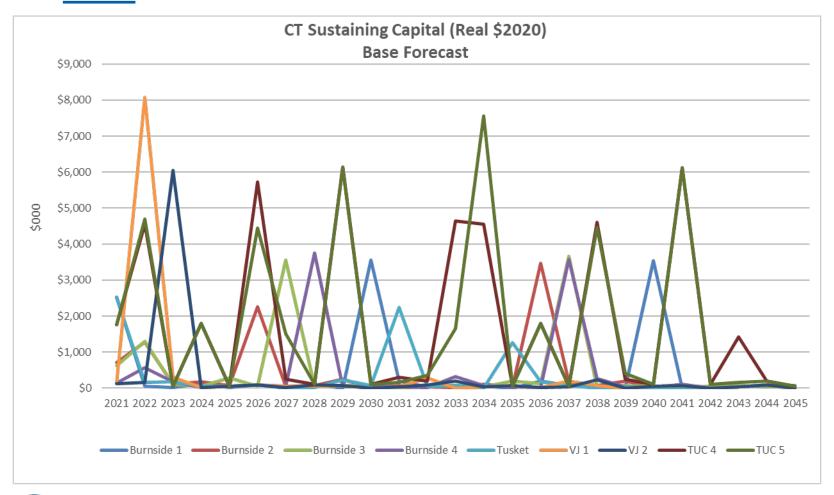
STAKEHOLDER THEMES

- Gas Pricing considerations for new gas generation
- Gas Supply considerations for new gas generation

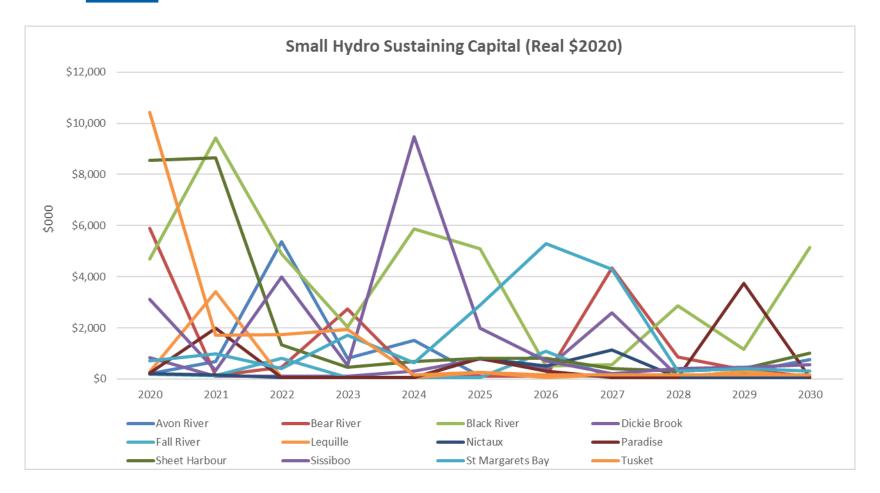
- This is considered in NS Power's proposed approach to fuel pricing with 3 gas supply options:
 - Option 1 Existing Gas
 - 20,000 MMBtu/day contracted capacity
 - Option 2 Peaking Gas
 - 100,000 MMBtu/day LNG Winter / Dawn Summer
 - Option 3 New Baseload Gas
 - 100,000 MMBtu/day new supply
 - Fixed Cost adder to new high C.F. gas builds



STAKEHOLDER THEMES


- Interested in understanding updated assumptions issued February 3, 2020
- Are we considering adjustments for Utilization Factor?
- Are we considering adjustments for Age of Plant?

- The sustaining capital forecasts issued in the updated assumption set had an error in the title (Nominal \$ should have been replaced with Real \$); corrected assumptions are on the following slides
- Current sustaining capital forecasts are based on current utilization projections; the intention is not to iterate on these costs unless utilization changes dramatically from current expectations



RENEWABLE INTEGRATION

STAKEHOLDER THEMES

 Several stakeholders requested additional detail requested on modeling assumptions being considered for integration of additional variable generation

NS POWER APPROACH

 Additional criteria have been developed via the Pre-IRP PSC Renewable Integration Study work

RENEWABLE INTEGRATION

- The stability study report has identified two possible options to integrate an additional 400 MW of inverter-based generation, represented by a wind as a proxy.
 - Interconnection Option: A second 345 KV AC tie between Onslow NS and Salisbury NB.
 - Local mitigation Option: A 200 MVA Synchronous Condenser and 200 MW Battery.
- Preliminary results showed that the system is stable with up to an additional 100 MW of wind depending on local mitigations/interconnections.

*Nova Scotia Power Stability Study for Renewable Integration Report, PSC North America, July 2019

RENEWABLE INTEGRATION

- Additional ramping/regulation reserve is required for dealing with increased variability and uncertainty in net load; in addition, retirement of coal units will create a ramping deficit
- 5-minute net load was studied and the 3-sigma approach was used determine the additional ramping reserve requirements
- With large increments of new wind additions, fast-acting generation will be required to offset the increased variability associated with high wind penetration
- For the purpose of IRP modeling, building new inverter-based generation will be linked to additional fast acting generation to satisfy the ramping reserve constraint:

Where: Y ramping reserve in MW and;

X is the inverter-based installed capacity in MW

*Nova Scotia Power Stability Study for Renewable Integration Report, PSC North America, July 2019

ASSUMPTIONS CLOSEOUT

- NS Power appreciates the comments that have been submitted by stakeholders in advance as well as the additional discussion in today's session
- NS Power will follow up on any action items taken today and issue a final assumption set on March 5th.

ADDITIONAL DISCUSSION

